MCDI - Mini-Circuits Exclusive Representative in Israel

MMIC Technologies: Integrated Passive Devices (IPD)

MMIC Technologies: Integrated Passive Devices (IPD)

Monolithic Microwave Integrated Circuits (MMICs) with no active elements such as transistors, and containing only passive elements such as resistors, capacitors, inductors, are referred to as Integrated Passive Devices (IPD). These devices do not need DC power to operate, and do not perform frequency conversion as in the case of frequency mixers or frequency multipliers.

What’s the big deal about IPDs? The short answer is they perform vital functions which active elements cannot such as filtering, equalization, balanced-to-unbalanced line conversion (or vice versa) and many more as we will describe later.

Novel MMIC Splitter/Combiner Designs Achieve High Isolation Down to DC

Figure 1: Resistive power splitter / combiner circuit schematic

Traditionally, DC power splitter / combiner circuits are implemented with resistors. A simple resistive power splitter / combiner circuit schematic is shown in Figure 1. If Z0 = 50W, and ports 2 and 3 are terminated in 50W, then port 1 is matched to 50W as well, so Z0 / 3 = 16.7W. Resistive power splitter / combiner circuits typically have poor isolation between ports at DC and over frequency.

Mesh Network Simulators for Wireless Device Testing

Figure 1: Schematic of a 6-port mesh, highlighting the desired (green) signal path and a leakage (red) between ports A and B.

A mesh network is a wireless network architecture in which three or more devices, also called nodes, are all connected to each other. Every node in the mesh network is able to communicate with some or all of the other nodes in the network. This type of architecture is distinct from traditional “hub and spoke” networks in which all devices connect to a central hub through which they communicate with other devices. In the real world, nodes can be wireless routers, cellular handsets, personal computers or any other device capable of sending and receiving signals. Home Wi-Fi networks, local area networking, military and public safety communications are all examples of applications where mesh networks are commonly employed.

Extending the Performance and Frequency Envelope for QFN Packaging Technology

Extending the Performance and Frequency Envelope for QFN Packaging Technology

High-performance, millimeter-wave (mmW) Monolithic Microwave Integrated Circuit (MMIC) products and cost-effective surface mount lead-frame-based packaging typically don’t come up in the same conversation, and for good reason. Just two to three years ago, it was difficult to conceive of operating at frequencies above 20 GHz without considering an expensive, open cavity, High Temperature Co-fired Ceramic (HTCC) package or resorting to more bespoke chip and wire assemblies.

Understanding Power Splitter/Combiner Power Handling with Coherent and Non-Coherent Signals

Understanding Power Splitter/Combiner Power Handling with Coherent and Non-Coherent Signals

A Power Splitter/Combiner is a passive device that can be used for two reciprocal functions: a single signal may be divided into multiple outputs, or in the opposite direction, multiple input signals are combined into a single output. In case of an N-port splitter, the input signal will be divided into N output ports. When used as an N-port combiner, the N inputs will be combined into an output signal from a single port.

Hi-Rel Components for Space Applications

Hi-Rel Components for Space Applications

The extreme operating conditions of the space environment combined with lack of access for repairs and zero tolerance for failure necessitate intensive qualification of electronic parts used in space missions. Mini-Circuits has a successful track record of screening components for space applications, and our experience in this area has led to robust testing and qualification programs for the parts we supply for these systems.

מפצלי הספק להתקנה משטחית מגיעים ל- 26.5 ג’יגה הרץ

מפצלי הספק להתקנה משטחית מגיעים ל- 26.5 ג'יגה הרץ

חלוקה של אותות ת”ר (RF) וגלי מיקרו על פני מעגלים ומערכות לתדירות גבוהה מסתמכת במידה רבה מאוד על מפצלי/ מסכמי הספק. מאחר שמגמות התכנון המודרניות מכווצות רכיבים כמו מפצלי/ מסכמי הספק לממדים שקטנים והולכים כל הזמן, בפני אנשי התכנון עומד אתגר משמעותי: כיצד אפשר לנהל רמות סבירות של הספק אותות מבלי לשאת בתוצאות של חום שקשה לפזרו בתוך מעגל או בתכנון המערכת.

One last thing...

Aharon

Before you leave, you should know that MCDI’s professional team of Application Engineers  will be delighted to assist you in sourcing the right component. Just fill the form and we will be back to you shortly.